Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
J Hazard Mater ; 470: 134166, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554511

RESUMO

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Assuntos
Antibacterianos , Ácido Peracético , Raios Ultravioleta , Águas Residuárias , Antibacterianos/farmacologia , Antibacterianos/química , Ácido Peracético/farmacologia , Tetraciclina/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/efeitos dos fármacos , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos da radiação , Desinfecção/métodos , Biodegradação Ambiental
2.
Poult Sci ; 103(4): 103492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335673

RESUMO

Salmonella and Campylobacter are common bacterial hazards causing foodborne illnesses worldwide. A large proportion of Salmonella and Campylobacter illnesses are attributed to contaminated poultry products that are mishandled or under cooked. Processing interventions such as chilling and post-chill dip are critical to reducing microbial contamination of poultry. A comprehensive search of the literature published between 2000 and 2021 was conducted in the databases Web of Science, Academic Search Complete, and Academic OneFile. Studies were included if they were in English and investigated the effects of interventions against Salmonella and/or Campylobacter on whole carcasses and/or parts during the chilling or post-chill stages of poultry processing. Random-effects meta-analyses were performed using the "meta" package in the R programming language. Subgroup analyses were assessed according to outcome measure reported, microorganism tested, processing stage assessed, and chemical treatment used. The results included 41 eligible studies. Eighteen studies reported results of 28 separate interventions against Salmonella and 31 reported results of 50 separate interventions against Campylobacter. No significant difference (P> 0.05) was observed when comparing the combined mean difference of all interventions targeting Salmonella to the combined mean difference of all interventions targeting Campylobacter or when comparing chilling times within each pathogen subgroup. For analyses examining antimicrobial additives, peroxyacetic acid (PAA) had the largest reduction against Salmonella population regardless of chilling time (P< 0.05). PAA also had the largest reduction against Campylobacter population and prevalence during primary chilling (P< 0.01). Air chilling showed a lower reduction for Campylobacter than any immersion chilling intervention (P< 0.05). Chilling time and antimicrobial used during poultry processing had varying effects depending on the pathogen and outcome measure investigated (concentration or prevalence). High heterogeneity and low sample numbers in most analyses suggest that more high-quality research that is well-designed and has transparent reporting of methodology and results is needed to corroborate the results.


Assuntos
Anti-Infecciosos , Campylobacter , Animais , Aves Domésticas , Carne/microbiologia , Microbiologia de Alimentos , Galinhas/microbiologia , Manipulação de Alimentos/métodos , Salmonella , Anti-Infecciosos/farmacologia , Ácido Peracético/farmacologia
3.
Int J Food Microbiol ; 413: 110601, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301540

RESUMO

Vegetables are globally associated with a considerable number of foodborne outbreaks caused by viral infections, specifically human norovirus. In fresh produce industry, washing represents a critical step for food safety as process wash water (PWW) needs to be maintained at appropriate microbial quality to prevent water-mediated cross-contamination. This study aimed to explore the disinfection efficacy of chlorine (free chlorine, FC), chlorine dioxide (ClO2) and peracetic acid (PAA) in PWW against infectious human norovirus and Tulane virus (TV). First, we tested the extent of TV inactivation in baby leaf, bell pepper, and vegetables mix PWW and monitored the viral decay by cell culture. Then, inactivation kinetics were defined for infectious human norovirus exposed to FC, ClO2 and PAA in baby leaves PWW using the human intestinal enteroids (HIE) system. Finally, kinetic inactivation models were fitted to TV reduction and decay of sanitizers to aid the implementation of disinfection strategies. Results showed that >8 log10 human norovirus and 3.9 log10 TV were inactivated by 20 ppm FC within 1 min; and by 3 ppm ClO2 in 1 min (TV) or 5 min (norovirus). PAA treatment at 80 ppm reduced ca. 2 log10 TV but not completely inactivated the virus even after 20 min exposure, while 5 min treatment prevented norovirus replication in HIE. TV inactivation in PWWs was described using an exponential decay model. Taking these data together, we demonstrated the value of applying the HIE model to validate current operational limits for the most commonly used sanitizers. The inactivation kinetics for human norovirus and TV, along with the predictive model described in this study expand the current knowledge to implement post-harvest produce safety procedures in industry settings.


Assuntos
Desinfetantes , Norovirus , Humanos , Desinfecção/métodos , Verduras , Cloro/farmacologia , Ácido Peracético/farmacologia , Norovirus/fisiologia , Água , Inativação de Vírus , Desinfetantes/farmacologia
4.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373840

RESUMO

AIMS: This study investigated the antimicrobial efficacy of ultrasound technology (US) in combination with two different disinfectants (Disinfectant A and Disinfectant B), containing peracetic acid (PAA) and quaternary ammonium compounds (QACs), respectively, against two sporigenic pathogens, Aspergillus brasiliensis and Bacillus subtilis. METHODS AND RESULTS: The microbicidal activity of the coupled treatment was compared with the use of the disinfectants alone, and the efficacy of the disinfection strategies was evaluated by the log reduction of the population of the microorganism inoculated onto stainless-steel surface. The combination treatment resulted in a log reduction of 5.40 and 3.88 (Disinfectant A + US) against A. brasiliensis and B. subtilis, at 850 and 500 ppm PAA, compared to 265 and 122 (Disinfectant A only). For Disinfectant B, in combination with US, showed a logarithmic reduction of 5.04 and 4.79 against A. brasiliensis and B. subtilis at 078% v v-1 and 392% v v-1 QACs, respectively, vs. 1.58 and 1.64 (Disinfectant B only). Moreover, no colonies or not statistically significant growth was observed within the US bath containing the disinfectant. CONCLUSIONS: The antimicrobial efficacy of the two disinfectants was greatly enhanced when used in combination with US, and this also makes it possible to avoid the overuse of chemicals for disinfection.


Assuntos
Desinfetantes , Desinfetantes/farmacologia , Desinfetantes/química , Ácido Peracético/farmacologia , Desinfecção/métodos , Bacillus subtilis
5.
Int J Food Microbiol ; 414: 110613, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341905

RESUMO

Sanitizers are widely incorporated in commercial apple dump tank systems to mitigate the cross-contamination of foodborne pathogens. This study validated the suitability of Enterococcus faecium NRRL B-2354 as a surrogate for Listeria monocytogenes during sanitizer interventions in dump tank water systems. E. faecium NRRL B-2354 inoculated on apples exhibited statistically equivalent susceptibility to L. monocytogenes when exposed to chlorine-based sanitizers (25-100 ppm free chlorine (FC)) and peroxyacetic acid (PAA, 20-80 ppm) in simulated dump tank water (SDTW) with 1000 ppm chemical oxygen demand (COD), resulting in 0.2-0.9 and 1.1-1.7 log CFU/apple reduction, respectively. Increasing the contact time did not affect sanitizer efficacies against E. faecium NRRL B-2354 and L. monocytogenes on apples. Chlorine and PAA interventions demonstrated statistically similar efficacies against both bacteria inoculated in SDTW. Chlorine at 25 and 100 ppm FC for 0.5-5 min contact yielded ~37.68-78.25 % and > 99.85 % inactivation, respectively, in water with 1000-4000 ppm COD, while ~51.55-99.86 % and > 99.97 % inactivation was observed for PAA at 20 and 80 ppm, respectively. No statistically significant difference was observed between the transference of E. faecium NRRL B-2354 and L. monocytogenes from inoculated apples to uninoculated apples and water, and from water to uninoculated apples during chlorine- or PAA-treated SDTW exposure. The data suggest E. faecium NRRL B-2354 is a viable surrogate for L. monocytogenes in dump tank washing systems, which could be used to predict the anti-Listeria efficacy of chlorine and PAA interventions during commercial apple processing. Further investigations are recommended to assess the suitability of E. faecium NRRL B-2354 as a surrogate for L. monocytogenes, when using different sanitizers and different types of produce to ensure reliable and comprehensive results.


Assuntos
Desinfetantes , Enterococcus faecium , Listeria monocytogenes , Malus , Ácido Peracético/farmacologia , Malus/microbiologia , Cloro/farmacologia , Água , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Desinfetantes/farmacologia
6.
J Food Prot ; 87(2): 100213, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38176613

RESUMO

Food-contact surfaces showing signs of wear pose a substantial risk of Listeria monocytogenes contamination and may serve as persistent sources of cross-contamination in fresh produce packinghouses. This study offers a comprehensive exploration into the influence of surface defects on the efficacies of commonly used sanitizers against L. monocytogenes biofilms on major food-contact surfaces. The 7-day-old L. monocytogenes biofilms were cultivated on food-contact surfaces, including stainless steel, polyvinyl chloride, polyester, low-density polyethylene, and rubber, with and without defects and organic matter. Biofilms on those surfaces were subjected to treatments of 200 ppm chlorine, 400 ppm quaternary ammonium compound (QAC), or 160 ppm peroxyacetic acid (PAA). Results showed that surface defects significantly (P < 0.05) increased the population of L. monocytogenes in biofilms on non-stainless steel surfaces and compromised the efficacies of sanitizers against L. monocytogenes biofilms across various surface types. A 5-min treatment of 200 ppm chlorine caused 1.84-3.39 log10 CFU/coupon reductions of L. monocytogenes on worn surfaces, compared to 2.79-3.93 log10 CFU/coupon reduction observed on new surfaces. Similarly, a 5-min treatment with 400 ppm QAC caused 2.05-2.88 log10 CFU/coupon reductions on worn surfaces, compared to 2.51-3.66 log10 CFU/coupon reductions on new surfaces. Interestingly, PAA sanitization (160 ppm, 1 min) exhibited less susceptibility to surface defects, leading to 3.41-4.35 log10 CFU/coupon reductions on worn surfaces, in contrast to 3.68-4.64 log10 CFU/coupon reductions on new surfaces. Furthermore, apple juice soiling diminished the efficacy of sanitizers against L. monocytogenes biofilms on worn surfaces (P < 0.05). These findings underscore the critical importance of diligent equipment maintenance and thorough cleaning processes to effectively eliminate L. monocytogenes contamination on food-contact surfaces.


Assuntos
Listeria monocytogenes , Árvores , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Frutas/química , Cloro , Contagem de Colônia Microbiana , Biofilmes , Ácido Peracético/farmacologia , Microbiologia de Alimentos , Aço Inoxidável/análise
7.
J Food Prot ; 87(3): 100217, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38184149

RESUMO

The application of antimicrobial treatments to beef trimmings prior to grinding for the reduction of microbial contamination in ground beef has increased recently. However, raw single-ingredient meat products are not permitted by Food Safety and Inspection Services (FSIS) to retain more than 0.49% water resulting from postevisceration processing. The effectiveness of antimicrobials with the limited water retention is not well documented. The objective of this study was to determine the effectiveness of peracetic acid at varied concentrations against E. coli O157:H7 and Salmonella on the surface of beef trimmings and beef subprimals that was applied at industry operating parameters within the retained water requirement. One hundred and forty-four each of beef trimmings and subprimals were used to evaluate the effect of different concentrations of peracetic acid solution on reducing E. coli O157:H7 and Salmonella on surfaces of fresh beef within the FSIS requirement of ≤0.49% retained water from antimicrobial spray treatments using a conveyor system. A ten-strain cocktail mixture was inoculated on surfaces of fresh beef and subjected to water or four different concentrations of peracetic acid (130, 150, 200, and 400 ppm). Spray treatments with 130, 150, and 200 ppm peracetic acid reduced (P ≤ 0.05) E. coli O157:H7 and Salmonella at least 0.2 log on surfaces of beef trimmings and subprimals. Spray treatment with 400 ppm peracetic acid resulted in approximately 0.5 and 0.3 log reduction of E. coli O157:H7 and Salmonella, respectively. Results indicate that all concentrations (130-400 ppm) of peracetic acid significantly reduced E. coli O157:H7 and Salmonella on beef trimmings and subprimals compared to untreated controls. Thus, a range from 130 to 400 ppm of peracetic acid can be used during beef processing to improve the safety of beef trimmings and subprimals when weight gain is limited to ≤0.49% to meet regulatory requirements.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Animais , Bovinos , Ácido Peracético/farmacologia , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Água/farmacologia , Carne , Contagem de Colônia Microbiana , Anti-Infecciosos/farmacologia , Salmonella , Contaminação de Alimentos/análise
8.
Poult Sci ; 103(1): 103213, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980760

RESUMO

Food waste and food loss has been a growing concern in the manufacturing industry with a gap between identifying the problem and implementing a solution. The manufacturing process of chicken is largely automated by conveyor belts and machines in which initial application of either peroxyacetic acid (PAA) or sodium hypochlorite (chlorine) solution is utilized to reduce the microbial load and prevent food borne illnesses on the chicken products as they are processed and packaged for distribution. However, during this automated process whole chickens can drop from the manufacturing line and become contaminated leading to the disposal and waste of the product. A solution to reduce food waste was to analyze a reconditioning procedure within the manufacturing process. The study evaluated the aerobic microbial growth on salvaged marinated deli raw whole chickens without giblets (WOGs) from conveyor belt loss reconditioned in either PAA or sodium hypochlorite (chlorine) solution to undropped chicken WOGs. Chicken rinsate and segmented samples were collected from each parameter and tested for microbial growth using Petrifilm aerobic plate count (APC) plates and converting results into log colony forming units (CFU). A difference (P < 0.05) was observed with the reconditioning of the WOGs in PAA (0.71 log10 CFU/mL) compared to the control (1.45 ± 0.26 log10 CFU/mL), for rinses. Of the segmented samples, the trussing strings displayed a significant decrease in APC counts for both chlorine (2.30 ± 0.49 log10 CFU/g) and PAA (2.3 ± 0.49 log10 CFU/g) reconditioning compared to the control (2.72 ± 0.39 log10 CFU/g). Reconditioning of salvaged deli chicken WOGs in chlorine or PAA is comparable to or better than the conventional process for the reduction of APC, it is an effective strategy to reintroduce dropped marinated deli chicken WOGs to the manufacturing line and can reduce food waste at a manufacturing level.


Assuntos
Galinhas , Eliminação de Resíduos , Animais , Aves Domésticas , Ácido Peracético/farmacologia , Hipoclorito de Sódio/farmacologia , Cloro , Microbiologia de Alimentos
9.
Food Res Int ; 175: 113772, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129061

RESUMO

Wash water from fresh vegetables and root vegetables is an important vehicle for foodborne virus transmission. However, there is lack of assessing rapid viral inactivation strategies in wash water characterized by a high soil content at the post-harvest stage. Considering the significance of food safety during the washing stage for fresh and root vegetable produce prior to marketing, we assessed the inactivation efficacy by using chlorine dioxide (ClO2) and peracetic acid (PAA) against a surrogate of human norovirus (murine norovirus 1, MNV-1) and hepatitis A virus (HAV), in wash water containing black soil and clay loam. The results indicated that MNV-1 and HAV were reduced to the process limit of detection (PLOD), with reductions ranging from 4.89 to 6.35 log10 PFU, and 4.63 to 4.96 log10 PFU when treated with ClO2 at 2.5 ppm for 10 mins. Comparatively, when treated with 500 ppm of PAA for 10 mins, MNV-1 and HAV were maximum reduced to 1.75 ± 0.23 log10 PFU (4.50 log10 PFU reduction) and 2.13 ± 0.12 log10 PFU (2.72 log10 PFU reduction). This demonstrated the efficacy of ClO2 in eliminating foodborne viruses in soil-rich wash water. When we validated the recovery of the virus from two types of wash water, the pH (9.24 ± 0.33 and 5.95 ± 0.05) had no impact on the recovery of MNV-1, while the recovery of HAV was less than 1 %. By adjusting the pH to a neutral level, recovery of HAV and its RNA levels was increased to 15.94 and 3.89 %. Thus, this study emphasized the critical role of pH in the recovery of HAV from the complex soil-rich aqueous environment, and the efficacy of ClO2 serving as a pivotal reference for the development of control strategies against foodborne viruses in the supply chain of fresh and root vegetables.


Assuntos
Desinfecção , Vírus da Hepatite A , Animais , Camundongos , Humanos , Desinfecção/métodos , Ácido Peracético/farmacologia , Solo , Água , Verduras
10.
Int J Food Microbiol ; 411: 110519, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101190

RESUMO

In this study, a combined treatment of peracetic acid (PAA) and 280 nm Ultraviolet-C (UVC) - Light emitting diode (LED) was applied for inactivating foodborne pathogens in water and apples. The combined treatment of PAA (50 ppm) and UVC-LED showed synergistic inactivation effects against Escherichia coli O157:H7 and Listeria monocytogenes in water. In mechanism analysis, PAA/UVC-LED treatment induced more lipid peroxidation, intracellular ROS, membrane, and DNA damage than a single treatment. Among them, membrane damage was the main synergistic inactivation mechanism of combination treatment. Cell rupture and shrink of both pathogens after PAA/UVC-LED treatment were also identified through scanning electron microscope (SEM) analysis. To examine inactivation of pathogens on the surface of apples by PAA, UVC-LED, and their combined treatment, a washing system (WS) was developed and used. Through applying the WS, PAA/UVC-LED treatment effectively inactivated two pathogens in washing solution and on the surface of apples below the detection limit (3.30 log CFU/2000 mL and 2.0 log CFU/apple) within 5 min. In addition, there was no significant difference in color or firmness of apples after PAA/UVC-LED treatment (p > 0.05).


Assuntos
Listeria monocytogenes , Malus , Ácido Peracético/farmacologia , Água/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos
11.
J Hazard Mater ; 463: 132868, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944231

RESUMO

Peracetic acid (PAA) disinfection is an emerging wastewater disinfection process. Its advantages include excellent pathogen inactivation performance and little generation of toxic and harmful disinfection byproducts. The objective of this review is to comprehensively analyze the experimental data and scientific information related to PAA-based disinfection processes. Kinetic models and modeling frameworks are discussed to provide effective tools to assess pathogen inactivation efficacy. Then, the efficacy of PAA-based disinfection processes for pathogen inactivation is summarized, and the inactivation mechanisms involved in disinfection and the interactions of PAA with conventional disinfection processes are elaborated. Subsequently, the risk of pathogen regrowth after PAA-based disinfection process is clearly discussed. Finally, to address ecological risks related to PAA-based disinfection, its impact on the spread of antibiotic-resistant bacteria and the transfer of antibiotic resistance genes (ARGs) is also assessed. Among advanced PAA-based disinfection processes, ultraviolet/PAA is promising not only because it has practical application value but also because pathogen regrowth can be inhibited and ARGs transfer risk can be significantly reduced via this process. This review presents valuable and comprehensive information to provide an in-depth understanding of PAA as an alternative wastewater disinfection technology.


Assuntos
Desinfetantes , Purificação da Água , Ácido Peracético/farmacologia , Desinfecção , Águas Residuárias , Bactérias/genética , Antibacterianos , Desinfetantes/farmacologia
12.
Poult Sci ; 103(2): 103310, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103529

RESUMO

Peroxyacetic acid (PAA) is commonly used during poultry processing to reduce the prevalence of Salmonella on carcasses and parts. Wash solutions containing PAA are used at varying concentrations during processing and processors use internally validated practices that best suit the needs of the individual establishment. This study was conducted to determine how temperature, pH, and contact time in combination with PAA concentration can affect the survival of Salmonella on poultry. The effectiveness of PAA in reducing the population of Salmonella on chicken wings was dependent on the concentration and temperature of the PAA solutions. The pH or contact time had no effects (P > 0.05) on total Salmonella or Salmonella Infantis reduction (log CFU/mL). Treatment with 0 ppm PAA at 27°C did not reduce (P > 0.05) total Salmonella or Salmonella Infantis compared to the inoculated, untreated control; in contrast, treatment at 4°C and 0 ppm PAA reduced (P < 0.05) total Salmonella and Salmonella Infantis. Treatments applied at 4°C significantly reduced (P < 0.05) total Salmonella at 50, 200, and 500 ppm PAA, compared to treatment at 27°C among the same PAA concentration. The population of Salmonella Infantis was significantly reduced (P < 0.05) at 4°C with 0, 50, 200, 500, and 1,000 ppm PAA among the same PAA concentration, compared to treatment at 27°C. Treatment conditions, such as temperature, can impact the effectiveness of PAA used as an antimicrobial treatment during poultry processing, and the results from this study can provide useful insights that could assist poultry processors to effectively incorporate PAA into antimicrobial intervention systems.


Assuntos
Anti-Infecciosos , Ácido Peracético , Animais , Ácido Peracético/farmacologia , Galinhas , Temperatura , Anti-Infecciosos/farmacologia , Salmonella , Aves Domésticas , Concentração de Íons de Hidrogênio , Microbiologia de Alimentos , Contagem de Colônia Microbiana/veterinária , Manipulação de Alimentos/métodos
13.
Biofouling ; 39(9-10): 990-1003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078346

RESUMO

This study aimed to evaluate the potential of the bacterium Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes to adhere to stainless steel discs with differing degrees of surface roughness (Ra = 25.20-961.90 nm). Stainless steel is a material commonly used in the food industry for processing equipment, which is regularly exposed to cleaning procedures. The investigation included the commercial disinfectants hydrogen peroxide/peracetic acid and sodium hypochlorite which were evaluated for their antibacterial and anti-adhesion activity. The adhesion was assessed by the standard plate count method, while the broth microdilution method CLSI M07-A10 was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the disinfectants. Based on the MIC values, both disinfectants exerted significant inhibitory effects with MIC values for hydrogen peroxide/peracetic acid and sodium hypochlorite of 250 µg ml-1 and 500 µg ml-1, respectively. Whereas the MBC values were equal to the MIC for all bacteria except for E. coli with values 2-fold higher than the MIC. Obtained results also revealed that all tested bacteria were able to adhere to stainless steel surfaces, although differences were found for strains and surface roughness. The lowest adhesion rate of each strain was recorded on the roughest stainless steel disc at a Ra of 961.90 nm. Further, at a concentration of 1 MIC, the disinfectant sodium hypochlorite reduced initial bacterial adhesion to stainless steel surfaces to a significantly greater extent than the disinfectant hydrogen peroxide/peracetic acid. These findings are consistent with the results obtained by Scanning Electron Microscopy (SEM) analysis, which indicates the great applicability of the tested disinfectants for the control of bacterial adhesion in the food industry.


Assuntos
Desinfetantes , Listeria monocytogenes , Desinfetantes/farmacologia , Ácido Peracético/farmacologia , Hipoclorito de Sódio/farmacologia , Escherichia coli , Aço Inoxidável , Peróxido de Hidrogênio/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilmes
14.
Environ Sci Technol ; 57(45): 17629-17639, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906720

RESUMO

This study provided an in-depth understanding of enhanced algae inactivation by combining ultraviolet and peracetic acid (UV/PAA) and selecting Microcystis aeruginosa as the target algae species. The electron paramagnetic resonance (EPR) tests and scavenging experiments provided direct evidence on the formed reactive species (RSs) and indicated the dominant role of RSs including singlet oxygen (1O2) and hydroxyl (HO•) and organic (RO•) radicals in algae inactivation. Based on the algae inactivation kinetic model and the determined steady-state concentration of RSs, the contribution of RSs was quantitatively assessed with the second-order rate constants for the inactivation of algae by HO•, RO•, and 1O2 of 2.67 × 109, 3.44 × 1010, and 1.72 × 109 M-1 s-1, respectively. Afterward, the coexisting bi/carbonate, acting as a shuttle, that promotes the transformation from HO• to RO• was evidenced to account for the better performance of the UV/PAA system in algae inactivation under the natural water background. Subsequently, along with the evaluation of the UV/PAA preoxidation to modify coagulation-sedimentation, the possible application of the UV/PAA process for algae removal was advanced.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Raios Ultravioleta , Ácido Peracético/farmacologia , Água , Peróxido de Hidrogênio , Oxirredução
15.
J Food Prot ; 86(11): 100172, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783289

RESUMO

Produce-borne outbreaks of Shiga toxin-producing Escherichia coli (STEC) linked to preharvest water emphasize the need for efficacious water treatment options. This study quantified reductions of STEC and generic E. coli in preharvest agricultural water using commercially available sanitizers. Water was collected from two sources in Virginia (pond, river) and inoculated with either a seven-strain STEC panel or environmental generic E. coli strain TVS 353 (∼9 log10 CFU/100 mL). Triplicate inoculated water samples were equilibrated to 12 or 32°C and treated with peracetic acid (PAA) or chlorine (Cl) [low (PAA:6ppm, Cl:2-4 ppm) or high (PAA:10 ppm, Cl:10-12 ppm) residual concentrations] for an allotted contact time (1, 5, or 10 min). Strains were enumerated, and a log-linear model was used to characterize how treatment combinations influenced reductions. All Cl treatment combinations achieved a ≥3 log10 CFU/100 mL reduction, regardless of strain (3.43 ± 0.25 to 7.05 ± 0.00 log10 CFU/100 mL). Approximately 80% (19/24) and 67% (16/24) of PAA treatment combinations achieved a ≥3 log10 CFU/100 mL for STEC and E. coli TVS 353, respectively. The log-linear model showed contact time (10 > 5 > 1 min) and sanitizer type (Cl > PAA) had the greatest impact on STEC and E. coli TVS 353 reductions (p < 0.001). E. coli TVS 353 in water samples was more resistant to sanitizer treatment (p < 0.001) indicating applicability as a good surrogate. Results demonstrated Cl and PAA can be effective agricultural water treatment strategies when sanitizer chemistry is managed. These data will assist with the development of in-field validation studies and may identify suitable candidates for the registration of antimicrobial pesticide products for use against foodborne pathogens in preharvest agricultural water treatment.


Assuntos
Anti-Infecciosos , Escherichia coli Shiga Toxigênica , Ácido Peracético/farmacologia , Cloro/farmacologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos
16.
Food Res Int ; 173(Pt 1): 113341, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803650

RESUMO

Leafy green vegetables (LGVs) have large surface areas and can be colonized by various microorganisms including pathogens. In this study, we investigated the effect of pre-harvest sanitizer treatments on the survival of inoculated proxy pathogen Listeria innocua ATCC 33090 and the natural microbial community of mizuna, rocket (arugula), red chard and spinach grown under commercial conditions. Electrolyzed water (e-water), peracetic acid (PAA), and 1-bromo-3-chloro-5-dimethylhydantoin (BCDMH) were tested against water controls. We also observed the subsequent sensorial changes of harvested, bagged LGV leaves over a period of 12 days within chill storage alongside the growth, diversity and structure of bacterial populations determined using 16S rRNA gene amplicon sequencing and total viable counts (TVC). Treatment with PAA resulted in the highest reductions of L. innocua (2.4-5.5 log units) compared to the other treatments (0.25-2.5 log units). On day 0 (24 h after sanitizer application), the TVC on sanitizer treated LGVs were significantly reduced compared to water controls, except for rocket. During storage at 4.5 (±0.5)°C sanitisers only hindered microbial growth on LGVs initially and did not influence final bacterial population levels, growth rates or changes in LGV sample colour, decay, odour and texture compared to water controls. Shelf-life was not extended nor was it reduced. The community structure on LGV types differed though a core set of bacterial amplicon sequence variants (ASV) were present across all samples. No significant differences were observed in bacterial diversity between sanitizer treatments, however sanitizer treated LGV samples had initially reduced diversity compared to water treated samples. The bacterial compositions observed at the end point of storage considerably differed from what was observed at initial point owing to the increase in abundance of specific bacterial taxa, mainly Pseudomonas spp., the abundance and growth responses differing between LGV types studied. This study provides a better understanding on the microbiology and sensory impact of pre-harvest applied sanitiser treatments on different LGVs destined for commercial food use.


Assuntos
Desinfetantes , Listeria , Desinfetantes/farmacologia , Verduras , Contagem de Colônia Microbiana , Microbiologia de Alimentos , RNA Ribossômico 16S/genética , Ácido Peracético/farmacologia , Água/química
17.
Int J Food Microbiol ; 405: 110372, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37672942

RESUMO

The potential of using commercial peroxyacetic acid (PAA) for Vibrio parahaemolyticus sanitization was evaluated. Commercial PAA of 0.005 % (v/v, PAA: 2.24 mg/L, hydrogen peroxide: 11.79 mg/L) resulted in a planktonic cell reduction of >7.00 log10 CFU/mL when initial V. parahaemolyticus cells averaged 7.64 log10 CFU/mL. For cells on stainless steel coupons, treatment of 0.02 % PAA (v/v, PAA: 8.96 mg/L, hydrogen peroxide: 47.16 mg/L) achieved >5.00 log10 CFU/cm2 reductions in biofilm cells for eight strains but not for the two strongest biofilm formers. PAA of 0.05 % (v/v, PAA: 22.39 mg/L, hydrogen peroxide: 117.91 mg/L) was required to inactivate >5.00 log10 CFU/cm2 biofilm cells from mussel shell surfaces. The detection of PAA residues after biofilm treatment demonstrated that higher biofilm production resulted in higher PAA residues (p < 0.05), suggesting biofilm is acting as a barrier interfering with PAA diffusing into the matrices. Based on the comparative analysis of genomes, robust biofilm formation and metabolic heterogeneity within niches might have contributed to the variations in PAA resistance of V. parahaemolyticus biofilms.


Assuntos
Perna (Organismo) , Vibrio parahaemolyticus , Animais , Peróxido de Hidrogênio/farmacologia , Ácido Peracético/farmacologia , Aço Inoxidável , Biofilmes , Plâncton
18.
Food Microbiol ; 116: 104358, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689425

RESUMO

Peracetic acid (PAA) is a commonly used antimicrobial in brush-bed spray bar interventions during apple packing. Prior to sanitizer application on the brush-bed, specific fruit cleaners, such as Acidex Duo (AD), EpiClean (EC), Nature's Shield 220-ACL (NS 220), or Nature's Shield 330-ALK (NS 330), are used to remove of soil, debris, and natural wax from the surfaces of apples. This study evaluated the effectiveness of commonly used cleaners in the apple industry to improve the antimicrobial efficacy of PAA against Listeria monocytogenes on apple surfaces during brush-bed spray bar interventions. Granny Smith apples, 48 h post-inoculation, underwent submersion treatment with different cleaners, as well as PAA alone or in combination with the cleaners. A 30-sec treatment of 5.0% AD, 4.2% EC, 10.0% NS 220, and 10.0% NS 330 resulted in 0.65, 0.50, 0.68, and 0.51 log10 CFU/apple reduction of L. monocytogenes on apples, respectively. Incorporating AD, NS 220, and EC significantly enhanced the antimicrobial efficacy of an 80 ppm PAA intervention. The enhancing effects were not impacted whether the cleaner was applied consecutively with PAA (sequentially) or in combination with PAA (simultaneously), nor were they impacted by a post-treatment water rinse. A 30-120 s wash of 80 ppm PAA with AD, EC, and NS 220 at their suggested concentration resulted in 2.46-2.55, 1.87-2.03, and 2.34-2.48 log10 CFU/apple reduction of L. monocytogenes, respectively, compared to 1.39-1.64 log10 CFU/apple in PAA treatment alone. The inclusion of AD or NS 220 in 80 ppm PAA solution resulted in a reduction of 1.51-1.63 log10 CFU/apple of Listeria after 30-60 s brush-bed spray wash. This enhancement in efficacy was significant compared to the treatment with 80 ppm PAA alone, which resulted in a reduction of 0.94-1.03 log10 CFU/apple. This study demonstrated that using certain commercially available cleaners along with PAA can enhance the effectiveness of PAA in reducing L. monocytogenes on fresh apples.


Assuntos
Listeria monocytogenes , Listeria , Malus , Ácido Peracético/farmacologia
19.
J Food Prot ; 86(11): 100157, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37729967

RESUMO

Salmonella and Campylobacter are two of the most common foodborne pathogens associated with poultry meat. Regulatory restrictions and consumer concerns have increased the interest for plant-derived antimicrobials and emerging novel technologies. The objective of this study was to determine the antimicrobial activity of photoactive compounds curcumin (CUR) and chlorophyllin (CH) followed by activating light exposure for the reduction of Salmonella and Campylobacter. Peroxyacetic acid (PAA) was also evaluated as a poultry industry standard antimicrobial processing aid. CUR and CH were evaluated in 96-well plates at concentrations of 100, 500, and 1,000 ppm, along with PAA at 100, 200, and 300 ppm, or distilled water (DW). Each well was inoculated with 105 CFU/mL of Salmonella Typhimurium or Campylobacter jejuni, and plates were exposed to activating light (430 nm) for 0 or 5 min. No detectable reductions were observed for Salmonella or Campylobacter when treated with CUR, CH, or 100 ppm PAA. However, when Salmonella was treated with 200 ppm PAA, counts were reduced from 4.57 to 2.52 log10 CFU/mL. When Salmonella was treated with 300 ppm PAA, counts were reduced to below detectable levels (5 CFU/mL). Campylobacter was reduced from 4.67 to 2.82 log10 CFU/mL when treated with 200 ppm PAA. However, no further reductions were observed when Campylobacter was treated with 300 ppm PAA (2.50 log10 CFU/mL). These results indicate that CUR and CH were not effective as antimicrobials under the evaluated conditions, particularly in comparison to the commonly used antimicrobial, PAA.


Assuntos
Anti-Infecciosos , Campylobacter , Curcumina , Animais , Curcumina/farmacologia , Galinhas , Anti-Infecciosos/farmacologia , Ácido Peracético/farmacologia , Salmonella typhimurium , Microbiologia de Alimentos
20.
Poult Sci ; 102(10): 103003, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37634267

RESUMO

The most significant occurrence of food-borne diseases is due to Campylobacter and Salmonella contamination from chicken meat, and for this reason, strict regulations about strategies to improve the control of food pathogens are imposed by food safety authorities. Despite the efforts of poultry industry since the beginning of risk analysis and critical control point to reduce the burden of food-borne illness, technological barriers along the way are increasingly necessary to ensure safe food. The aim of this review was to carry out a scientific approach to the influence of peracetic acid (PAA) as an antimicrobial and its toxicological safety, in particular the stabilizer used in the formulation of PAA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP), suggesting the possibility of researching the residual HEDP in meat, which would allow the approval of the PAA by the health authorities of several countries that still restrict it. This review also aims to ascertain the effectiveness of PAA, in different cuts and carcasses, by different application methods, comparing the effectiveness of this antimicrobial with other antimicrobials, and its exclusive or combined use, for the decontamination of poultry carcasses and raw parts. The literature results support the popularity of PAA as an effective intervention against pathogenic bacteria during poultry processing.


Assuntos
Anti-Infecciosos , Campylobacter , Doenças Transmitidas por Alimentos , Animais , Ácido Peracético/farmacologia , Galinhas/microbiologia , Ácido Etidrônico , Anti-Infecciosos/farmacologia , Carne/microbiologia , Aves Domésticas , Doenças Transmitidas por Alimentos/veterinária , Microbiologia de Alimentos , Manipulação de Alimentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...